Comparison of Defective Casting Product Classification Results Using the K-Nearest Neighbors Algorithm

Authors

  • Muhammad Farhan Alfarizi Universitas Pelita Bangsa
  • Muhamad Fatchan Universitas Pelita Bangsa
  • Wahyu Hadikristanto Universitas Pelita Bangsa

DOI:

https://doi.org/10.59890/ijarss.v2i6.1968

Keywords:

Product, Casting, Prediction, KNN, Naive bayes

Abstract

This study compares the accuracy of K-Nearest Neighbors (KNN) and Naive Bayes algorithms in detecting defects in impeller products. Using a dataset of impeller images, we applied preprocessing, feature extraction, and selection techniques. The models were assessed using metrics such as precision, accuracy, F1-score, recall. and with KNN achieving 98.11% accuracy and Naive Bayes 85.38%. The t-SNE visualization confirmed distinct clustering of defective and non-defective products. Our findings suggest that KNN is more reliable for defect detection in industrial applications. These results provide valuable insights for implementing effective machine learning models in manufacturing quality control.

References

casting product image data for quality inspection. (n.d.). Retrieved May 31, 2024, from https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product

Homepage, J., Delvika, B., Nurhidayarnis, S., Rinada, P. D., Abror, N., & Hidayat, A. (2022). Perbandingan Klasifikasi Antara Naive Bayes dan K-Nearest Neighbor Terhadap Resiko Diabetes pada Ibu Hamil. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 2(2), 68–75. https://doi.org/10.57152/MALCOM.V2I2.432

Penerapan Algoritma K-Means Clustering Untuk Mengetahui Kemampuan Karyawan IT | Computer Science (CO-SCIENCE). (n.d.). Retrieved May 31, 2024, from http://103.75.24.116/index.php/co-science/article/view/623

Sitepu, R., & Manohar, M. (2022). Implementasi Algoritma K-Nearest Neigbor Untuk Klasifikasi Pengajuan Kredit. Jurnal Sistem Informasi, Teknik Informatika Dan Teknologi Pendidikan, 1(2), 49–56. https://doi.org/10.55338/JUSTIKPEN.V1I2.6

View of Analisis Sentimen pada Media Sosial dengan Teknik Kecerdasan Buatan Naïve Bayes: Kajian Literatur Review. (n.d.). Retrieved May 31, 2024, from https://journal.mediapublikasi.id/index.php/oktal/article/view/2944/1371

View of Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN. (n.d.). Retrieved May 31, 2024, from https://jkomtekinfo.org/ojs/index.php/komtekinfo/article/view/330/160

View of Klasifikasi Bidang Minat Mahasiswa Elektronika Dalam Menentukan Topik Tugas Akhir Menggunakan Algoritma Naïve Bayes Classifier (Studi Kasus: Prodi Pendidikan Teknik Informatika FT-UNP). (n.d.). Retrieved May 31, 2024, from https://www.jptam.org/index.php/jptam/article/view/6813/5671

View of KLASIFIKASI DIAGNOSA PENYAKIT DIABETES DENGAN METODE NAIVE BAYES BERBASIS WEB. (n.d.). Retrieved May 31, 2024, from https://ojs.ninetyjournal.com/index.php/JKBTI/article/view/35/26

View of METODE NAIVE BAYES UNTUK KLASIFIKASI MASA STUDI SARJANA. (n.d.). Retrieved May 31, 2024, from http://teknologipintar.org/index.php/teknologipintar/article/view/385/370

View of Pemanfaatan Kecerdasan Buatan Dalam Mendukung Pembelajaran Mandiri. (n.d.). Retrieved May 31, 2024, from https://ejournal.uika-bogor.ac.id/index.php/EDUCATE/article/view/14843/4618

Downloads

Published

2024-06-21

How to Cite

Alfarizi, M. F., Fatchan, M., & Hadikristanto, W. (2024). Comparison of Defective Casting Product Classification Results Using the K-Nearest Neighbors Algorithm. International Journal of Applied Research and Sustainable Sciences, 2(6), 417–426. https://doi.org/10.59890/ijarss.v2i6.1968

Issue

Section

Articles