Comparative Analysis of Convolutional Neural Network (CNN) Architectures in Classification of Cattle and Pig Rambaks

Authors

  • Haryono Haryono Politeknik Negeri Malang
  • Cahya Rahmad Politeknik Negeri Malang
  • Banni Satria Andoko Politeknik Negeri Malang

DOI:

https://doi.org/10.59890/ijist.v2i5.1793

Keywords:

Architecture, Classification, CNN, Deep Learning, Rambak

Abstract

Rambak crackers are one of the food ingredients that have the characteristics of expansion and crispy texture. The general public often faces difficulties in distinguishing between pork and beef rambak crackers that have been processed, so it is important to rely on technology, especially artificial intelligence (AI), to help distinguish between them. This study was conducted to compare the capabilities of several CNN architectures in classifying images of pork and beef rambak crackers. The results of the study showed that the Xception architecture had the highest accuracy rate in classifying pork and beef rambak crackers, with an average accuracy rate of 98.24%.

References

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8

Berliani, T., Rahardja, E., & Septiana, L. (2023). Perbandingan Kemampuan Klasifikasi Citra X-ray Paru-paru menggunakan Transfer Learning ResNet-50 dan VGG-16. Journal of Medicine and Health, 5(2), 123–135. https://doi.org/10.28932/jmh.v5i2.6116

Dinata, I. M. A. M., Gunadi. I Gede Aris, & Sunarya, I. M. G. (2024). Analisis Hyperparameter Pada Klasifikasi Jenis Daging Menggunakan Algoritma Convolutional Neural Network. Jurnal Sains Komputer & Informatika (J-SAKTI), 8(1), 25–34.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning (Adaptive Computation and Machine Learning series). MIT Press.

Negara, R. G. P., Permadi, H. irawati, Kusuma, C., Anandita, A. S., & Prayitno, C. P. (2023). PENGARUH LAMA PERENDAMAN MENGGUNAKAN LARUTAN Ca(OH)2 DENGAN KONSENTRASI 8%PADA PEMBUATAN KERUPUK RAMBAK TERHADAP KADAR PROTEIN DAN DAYA KEMBANG KULITKAMBING. Jurnal Pertanian, Peternakan, Perikanan, 1. https://doi.org/10.3766/hibrida.v1i1.709

Putra, K. B. V., Bayupati, I. P. A., & Arsa, D. M. S. (2021). Klasifikasi Citra Daging Menggunakan Deep Learning dengan Optimisasi Hard Voting. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 656–662. https://doi.org/10.29207/resti.v5i4.3247

Rahman, A. F. A., Muji, S. Z. M., & Kan, C. U. E. (2024). Beef and Pork Meat Classification using MobileNet V2 Algorithm via Android Smartphone Application. Evolution in Electrical and Electronic Engineering, 5(1), 292–297. https://publisher.uthm.edu.my/periodicals/index.php/eeee/article/view/15319

Zhou, D.-X. (2020). Theory of deep convolutional neural networks: Downsampling. Neural Networks, 124, 319–327. https://doi.org/10.1016/j.neunet.2020.01.018

Downloads

Published

2024-06-01

How to Cite

Haryono, H., Rahmad, C., & Andoko, B. S. (2024). Comparative Analysis of Convolutional Neural Network (CNN) Architectures in Classification of Cattle and Pig Rambaks. International Journal of Integrated Science and Technology, 2(5), 412–419. https://doi.org/10.59890/ijist.v2i5.1793

Issue

Section

Articles