Bioactivities of Purple Shamrock (Oxalis Triangularis) Crude Extract and Evaluation of Shamrock Topical Antibacterial Gel
DOI:
https://doi.org/10.59890/ijist.v2i5.1797Keywords:
Bacterial inhibition, Non-Irritant, Skin Microbiome, Topical Antibacterial Gel, Wound HealingAbstract
This study delves into the intricate dynamics of the skin microbiome, focusing on its susceptibility to infection when the skin's protective barrier is compromised. Through a comprehensive examination of wound infections, the research underscores the prevalence of acute wounds and their profound impact on morbidity and mortality rates, particularly in developing nations like the Philippines. Despite adherence to WHO protocols, surgical site infections (SSI) remain alarmingly high, necessitating innovative interventions. Enter topical antibacterial agents, offering targeted therapy with minimal systemic impact. Leveraging the medicinal properties of O. triangularis, the study formulates and evaluates a topical antibacterial gel, unveiling its remarkable efficacy in wound healing and bacterial inhibition. Findings reveal promising results, exhibiting accelerated healing and notable antibacterial activity against E. coli. Moreover, its stability and non-irritant nature further accentuate its potential as a cost-effective solution for wound management. This research heralds a promising paradigm shift in wound care, advocating for the integration of botanical extracts in topical formulations for enhanced therapeutic outcomes.
References
Abu Bakar, M., Haque, M., McKimm, J., & Sartelli, M. (2019). Health Care-Associated Infections-An Overview. Infection and Drug Resistance. 2018; 11:2321-2333. doi: 10.2147/IDR.S177247
Ahmed, T., Archie, S.R., Faruk, A., Chowdhury, F.A., Shoyaib, A., Ahsan, C.R. (2020). Evaluation of the Anti-Inflammatory Activities of Diclofenac Sodium, Prednisolone and Atorvastatin in Combination with Ascorbic Acid. Antiinflamm Antiallergy Agents Med
Chem. 2020 Sep; 19(3): 291–301. Published online 2020 Sep. doi: 10.2174/1871523018666190514112048
Alfaro, R.A. & Davis, D.D. (2023). Diclofenac. National Library of Medicine. ncbi.nlm.gov/books/NBK557879
Altermimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G., & Lightfoot, D. (2017). Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants (Basel). 2017 Dec; 6(4): 42. Published online 2017 Sep 22. doi: 10.3390/plants6040042
Anywar, G. & Muhumuza, E. (2023). Bioactivity and toxicity of coumarins from African medicinal plants. Front. Pharmacol. Volume 14 – 2023. https://doi.org/10.3389/fphar.2023.1231006
Arakareddy, B., Johnson, B.L., & Sam, K.K. (2020). Formulation of an Anti-Bacterial Cream from Plant Oxalis corniculate and its Evaluation. International Journal of Current Pharmaceutical Research. Vol. 12, Issue 5, 2020. doi: 10.22159/ijcpr.2020v12i5.39763
Arancel, F. & Rovillos, K. (2019). Healthcare-Associated Infections among Patients in a Surgery Ward: Cross-Sectional Study. Southern Philippines Medical Center (SPMC) J Health Care Serv. 2019;6(1):4. http://n2t.net/ark/76951/jhcs94gn2f
Arakelyan, S. Arakelyan, H. (2020) Beauty for Health-Oxalis triangularis. https://www.researchgate.net/publication/340829095_Beauty_For_Health_Oxalis_Triangularis/link/5ea00b23a6fdccda592c34cd/download?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
Aykul, S., & Martinez-Hackert, E. (2016). Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Analytical biochemistry, 508, 97–103. https://doi.org/10.1016/j.ab.2016.06.025
Bandyopadhyay, D. (2021). Topical Antibacterials in Dermatology. Indian Journal of Dermatology. 2021 Mar-Apr; 66(2): 117-125. doi: 10.4103/ijd.IJD 99 18
Barrasa, A., Henarejos, V., Merck, B., O’Connor, Pastor, C., Puyana, J.C., & Villalonga, A. (2022) Implementing a mHealth-Based Patient and Nurse Educational Program to Reduce Wound Infection in Rural Philippines. Annals of Global Health. 2022; 88(1):76. doi: 10.5334/aogh.3834
Belkaid, Y., Byrd, A.L., & Segre, J.A. (2018) The Human Skin Microbiome. Nature Reviews Microbiology. Vol. 16, 143-155 (2018). https://doi.org/10.1038/nrmicro.2017.157
Berrouet, C., Dorilas, N., Rejniak, K. A., & Tuncer, N. (2020). Comparison of Drug Inhibitory Effects (IC50) in Monolaayer and Spheroid Cultures. Bull Math Biol. 2020 Jun 3; 82(6): 68. Published online 2020 Jun 3. doi: 10.1007/s11538-020-00746-7
Bessa, L.J., Fazii, P., Di Guilio, M., & Celini, L. (2015) Bacterial Isoclates from Infected Wounds and their Antibiotic Susceptibility Patterns: Some Remarks about Wound Infection. International Wound Journal. Vol. 12 No. 1, pg.47-52. doi:10.1111/iwj.12049
Bigliardi, P.L., Alsagoff, S.A.L., El-Kafrawi, H.Y., Pyon, J. Wa, C.T.C., & Villa, M.A. (2017). Povidone iodine in wound healing: A review of current concepts and practices. International Journal of Surgery. Volume 44, August 2017, Pages 260-268. https://doi.org/10.1016/j.ijsu.2017.06.073
Carmen Perez-Camino, M. Cert, A., Romero-Segura, A., Cert-Trujillo, R. & Moreda, W. (2008). Alkyl Esters of Fatty Acids a Useful Tool to Detect Soft Deodorized Olive Oils. Journal of Agricultural and Food Chemistry. 2006,56,15,6740-6744. https://doi.org/10.1021/jf801131b
Carmona-Cruz, S., Orozco-Covarrubias, L., & Saez-de-Ocariz, M. (2022) The Human Skin Microbiome on Selected Cutaneous Diseases. Frontiers. Vol. 12 (2022). doi: 10.3389/fcimb.2022.834135
Cedillo-Cortezano, M., Martinez-Cuevas, L.R., Marquez-Lopez, J.A., Barrera-Lopez, I.L., Escutia-Perez, S. & Petricevich, V.L. (2024) Use of Medicinal Plants in the Process of Wound Healing: A Literature Review. Pharmaceuticals 17(3):303 doi: 10.3390/ph17030303
Chaiya, P., Senarat, S., Phaechamud, T., & Narakornwit, W. (2022, January 1). In vitro anti-inflammatory activity using thermally inhibiting protein denaturation of egg albumin and antimicrobial activities of some organic solvents. Materials Today: Proceedings; Elsevier BV. https://doi.org/10.1016/j.matpr.2022.04.916
Dons, T. & Soosairaj, S. (2018). Evaluation of Wound Healing Effect of Herbal Lotion in Albino Rats and its Antibacterial Activities. Clinical Phytoscience. Vol 4, 6 (2018). doi: 10.1186/s4086-0180-0065-z
European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMD) (2003). Determination of Minimum Inhibitory Concentrations (MICs) of the Antibacterial Agents by Broth Dilution. EUCAST Discussion Document E.Dis 5.1.
Finberg, R. W., Moellering, R. C., Tally, F. P., Craig, W. A., Pankey, G. A., Dellinger, E. P., West, M. A., Joshi, M., Linden, P. K., Rolston, K. V., Rotschafer, J. C., & Rybak, M. J. (2004). The importance of bactericidal drugs: future directions in infectious disease. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 39(9), 1314–1320. https://doi.org/10.1086/425009
Fossen, T., Rayyan, S., Holmberg, M.Y., Nateland, H.S., Andersen, O.M. (2005). Acylated Anthocyanins from Leaves of Oxalis triangularis. Phytochemistry. Vol. 66, May 2005, pg. 1133-1140. doi: 10.1016/j.phytochem.2005.04.009
Fossen, T., Rayyan, S., Holmberg, M.H., Nimtz, M. & Andersen, O.M. (2005). Covalent Anthocyanin-Flavone Dimer from Leaves of Oxalis triangularis. Phytochemistry. 68 (5), 652-662, 2007. doi: 10.1016/j.phytochem.2006.10.030
Guevarra, B.Q., Claustro, A.L., Espeso, E.I., … & Ysrael, M.C. (2005). A Guidebook to Plant Screening: Phytochemical and Biological. Research Center for Natural Sciences, University of Santo Tomas, UST. ISBN: 971-506-263-6
Huh, S., Kim, Y. S., Jung, E., Lim, J., Jung, K. S., Kim, M. O., Lee, J., & Park, D. (2010). Melanogenesis inhibitory effect of fatty acid alkyl esters isolated from Oxalis triangularis. Biological & pharmaceutical bulletin, 33(7), 1242–1245. https://doi.org/10.1248/bpb.33.1242
Khan, H., Pervaiz, A., Intagliata, S., Das, N., Venkata, K.C.N., Atanasov, A.G., Najda, A., Nabavi, S.M., Wang, D., Pittala, V., Bishayee, A. (2020). DARU Journal of Pharmaceutical Sciences. 2020 Jun; 28(1): 387–401. Published online 2020 Feb 14. doi: 10.1007/s40199-019-00319-7
Kaur, J. & Kaur, G. (2015). An insight into the role of citrus bioactives in modulation of colon cancer. Journal of Functional Foods. Vol. 13, pg. 239-261. https://doi.org/10.1016/j.jff.2014.12.043
Kim, H.S., Kim, J.S., Kim, Y. G. & Ko, D.Y. (2018). Extracts of Oxalis triangularis shows Broad Spectrum Antibacterial Activity in Acidic Condition. Biomedical Research. Vol. 29, No. 20. (2018). doi: 10.4066/biomedicalresearch.29-18-1089
Karimi, E., Jaafar, H.Z., Ghasemzadeh, A. et al. Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth. biol res 48, 9 (2015). https://doi.org/10.1186/0717-6287-48-9
Kumar, S. & Pandey, A.K. (2013). Chemistry and Biological Activities of Flavonoids: An Overview. Scientific World Journal. 2013; 2013: 162750. Published online 2013 Dec 29. doi: 10.1155/2013/162750
Lipatan, M.C., Macalindong, S.S. & Ramirez, A.D. (2022). Surgical Site Infection (SSI) Surveillance Program for Masectomy in the Department of Surgery of the University of the Philippines-Philippine General Hospital. Acta Medica Philippina. 56(6). doi: 10.47895/amp.v56i6.3586
Loree, J., & Lappin, S.L. (2023). Bacteriostatic Antibiotics. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK547678/
Luber, P., Nartelt, E., Genschow, E. Wagner, J. & Hahn, H. (2003). Comparison of Broth Microdilution, E Test and Agar Dilution Methods for Antibiotic Susceptibility Testing of Campylobacter jejuni and Campylobacteria coli. Journal of Clinical Microbiology. 2003 Mar; 41(3): 1062-1068. doi: 10.128/JCM.41.3.1062-1068.2003
Luo, B., Chen, L., Chen, G., Wang, Y., Xie, Q., Chen, X., & Hu, Z. (2022). Transcription and Metabolism Pathways of Anthocyanin in Purple Shamrock (Oxalis triangularis A.St.-Hil.). Metabolites, 12(12), 1290. https://doi.org/10.3390/metabo12121290
Madhungara, H.D.T. & Samarakoon, N.A. (2023).In Vitro Anti-Inflammatory Egg Albumin Denaturation Assay: Methodology. ResearchGate. doi: 10.3140./RG.2.2.22740.88960
Maskarinec, S.A., Sharma-Kuinkel, B.K., Turner, N.A. (2019). Staphyloccocus aureus: An Overview of Basic and Clinical Research. National Review of Microbiology. 2019; 17:203-218. doi:10.1038/s41579-018-0147-4
Mohammadi-Cheraghabadi, M. & Hazrati, S. (2023). Chapter 5 Terpenoids, steroids, and phenolic compounds of medicinal plants. In C. Arora, D. Verma, J. Aslam & P. Mahish (Ed.), Phytochemicals in Medicinal Plants: Biodiversity, Bioactivity and Drug Discovery (pp. 105-130). Berlin, Boston: De Gruyter. https://doi.org/10.1515/9783110791891-005
Miao, L., Zhang, H., Yang, L., Chen, L., Xie, Y., and Xiao, J. (2022) Chapter 4.8-Flavonoids. Antioxidants Effects in Health. 2022, pg. 353-374. https://doi.org/10.1016/B978-0-12-819096-8.00048-3
National Nutrition Council. (2021). Diet and Acne. https://nnc.gov.ph/regional-offices/mindanao/region-xi-davao-region/6533-diet-and-acne
Pandey, P., Mehta, R., Upadhay, R. (2013). Physico-chemical and preliminary phytochemical screening of Psoralea corylifolia. Archives of Applied Science Research. 5(2): 261-265.
Poklar, N., & Vesnaver, G. (2000). Thermal Denaturation of Proteins Studied by UV Spectroscopy. Journal of Chemistry and Education. 2000, 77, 3, 380. doi: 10.1021/ed077p380
PSIBERG (2022). Rf Values: Definition, Calculation and Explanation. https://psiberg.com/rf-values/
Rahman, M.M., Rahaman, M.S., Islam, M.R., … & Uddin, M.S. (2022). Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules. 2022 Jan; 27(1): 233. Published online 2021 Dec 30. doi: 10.3390/molecules27010233
Rescober, A.A., Blanco, I.F., Custudio, S.E., Daguman, F.L., Dollesin, J., Janio, J.A., & Viray, J.M. (2022). Antimicrobial and Wound Healing Activity of Ixora coccinea Leaf Extract in Hydrogel Formulation. Acta Medica Philippina. Vol. 56, No. 7
Sotocinal, S. G., Sorge, R. E., Zaloum, A., Tuttle, A. H., Martin, L. J., Wieskopf, J. S., Mapplebeck, J. C., Wei, P., Zhan, S., Zhang, S., McDougall, J. J., King, O. D., & Mogil, J. S. (2011). The Rat Grimace Scale: a partially automated method for quantifying pain in the laboratory rat via facial expressions. Molecular pain, 7, 55. https://doi.org/10.1186/1744-8069-7-55
Tazeze, H., Mequanente, S., Nigussie, D., Legesse, B. A., Makonnen, E., & Ayele, T. M. (2021, October 1). Investigation of Wound Healing and Anti-Inflammatory Activities of Leaf Gel of Aloe trigonantha L.C. Leach in Rats. Journal of Inflammation Research; Dove Medical Press. https://doi.org/10.2147/jir.s339289
Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines (Basel). 2018 Sep; 5(3): 93. Published online 2018 Aug 25. doi: 10.3390/medicines5030093.
Vermeulen, H., Westerbos, S. J., & Ubbink, D. T. (2010). Benefit and harm of iodine in wound care: a systematic review. The Journal of hospital infection, 76(3), 191–199. https://doi.org/10.1016/j.jhin.2010.04.026
Yalanis, G. C. (2022). Topical antibiotics: Uses, Common Brands, and Safety Info. https://www.singlecare.com/drug-classes/topical-antibiotics
Yussof, A. I. M. (2013). Tissue Culture, Biological Activities and In Vitro Flowering of Oxalis triangularis. University of Malaya. : https://www.scholar.google.com.ph/scholar?cluster=13610462395727167726&hl=en&as_sdt=0,5#d=gs_qabs&t=1697859751966&u=#p=ys6MnVk2A48J
Zarai, Z., Kadri, A., Chobba, I.B., Mansour, R.B., Bekir, A., Mejdoub, H. & Gharsallah, N. (2011) The in-vitro Evaluation of Antibacterial, Antifungal and Cytotoxic Proteries of Marrubium vulgare L. essential oil grown in Tunisia. Lipids in Health and Disease. 10, 161 (2011). doi: 10.1186/1476-511X-10-16Bad