Detect the Activity of Benign and Malignant Breast Cancer

Authors

  • Ayu Fitriyani Universitas Pelita Bangsa
  • Muhamad Fatchan Universitas Pelita Bangsa
  • Wahyu Hadikristanto Universitas Pelita Bangsa

DOI:

https://doi.org/10.59890/ijist.v2i5.1870

Keywords:

Breast Cancer Detection, Convolutional Neural Network, Transfer Learning, Data Augmentation, VGG-16 Model

Abstract

Breast cancer detection is an important stage for early cancer diagnosis. In this study, a Convolutional Neural Network (CNN) algorithm is used to detect breast cancer. The dataset used consists of MRI scan images of benign and malignant breast cancer, which are processed through breast image cropping and data augmentation. The model was trained using CNN architecture with transfer learning method of VGG-16 model. The results of the model training showed good performance with an accuracy of 62%. These findings show the potential of using CNN and transfer learning in improving early detection of breast cancer.

References

Ariansyah, M. H., Winarno, S., & Sani, R. R. (2023). Monkeypox and measles detection using CNN with VGG-16 Transfer Learning. Journal of Computing Research and Innovation, 8(1), 32–44. https://doi.org/10.24191/jcrinn.v8i1.340

BOUKAACHE, A., NASSER EDİNNE, B., & BOUDJEHEM, D. (2024). Breast Cancer Image Classification using Convolutional Neural Networks (CNN) Models. International Journal of Informatics and Applied Mathematics, 6(2), 20–34. https://doi.org/10.53508/ijiam.1407152

Candra, D., Wibisono, G., Ayu, M., & Afrad, M. (2024). LEDGER: Journal Informatic and Information Technology Transfer Learning model Convolutional Neural Network menggunakan VGG-16 untuk Klasifikasi Tumor Otak pada Citra Hasil MRI. Open Access Ledger, 3(1).

Kusumawaty, J., Noviati, E., Sukmawati, I., Srinayanti, Y., & Rahayu, Y. (2021). Efektivitas Edukasi SADARI (Pemeriksaan Payudara Sendiri) Untuk Deteksi Dini Kanker Payudara. ABDIMAS: Jurnal Pengabdian Masyarakat, 4(1), 496–501. https://doi.org/10.35568/abdimas.v4i1.1177

Murthy, D. G. N. K., H V, D. C., E V, D. V., B M, D. M., & Srinivas, D. C. (2024). A Novel Transfer Learning Approach to Improve Breast Cancer Diagnosing on Screening Mammography. International Journal of Electrical and Electronics Research, 12(1), 300–307. https://doi.org/10.37391/ijeer.120141

Nasser, M., & Yusof, U. K. (2023). Deep Learning Based Methods for Breast Cancer Diagnosis: A Systematic Review and Future Direction. Diagnostics, 13(1). https://doi.org/10.3390/diagnostics13010161

Nurbaiti, N., Hidayat, E. P. S., Anwar, K., Hermawan, D., & Izzuddin, S. (2024). Development of AI Models from Mammography Images with CNN for Early Detection of Breast Cancer. Generation Journal, 8(1), 42–53. https://doi.org/10.29407/gj.v8i1.21601

Penggunaan, A., Terhadap, S., Emosional, K., Kelas, S., Sekolah, I. I. I., Desa, D. I., & Mayong, P. (2023). 1 , 2 , 3 123. 09(2), 94–98.

Ragab, D. A., Sharkas, M., Marshall, S., & Ren, J. (2019). Breast cancer detection using deep convolutional neural networks and support vector machines. PeerJ, 2019(1), 1–23. https://doi.org/10.7717/peerj.6201

Tandon, R., Agrawal, S., Rathore, N. P. S., Mishra, A. K., & Jain, S. K. (2024). A systematic review on deep learning-based automated cancer diagnosis models. Journal of Cellular and Molecular Medicine, 28(6), 1–20. https://doi.org/10.1111/jcmm.18144

Downloads

Published

2024-06-01

How to Cite

Ayu Fitriyani, Muhamad Fatchan, & Wahyu Hadikristanto. (2024). Detect the Activity of Benign and Malignant Breast Cancer. International Journal of Integrated Science and Technology, 2(5), 484–495. https://doi.org/10.59890/ijist.v2i5.1870

Issue

Section

Articles