Valuation of Svm Kernel Performance in Organic and Non-Organic Waste Classification
DOI:
https://doi.org/10.59890/ijist.v2i5.1873Keywords:
Waste Classification, Support Vector Machine, Radial Basis Function Kernel, Polynomial Kernel, Machine LearningAbstract
In an era of increasing concern for environmental sustainability, waste management remains an important global issue. Efficient waste classification, in particular distinguishing between organic and recyclable materials, is essential for reducing environmental impact. Traditional manual classification methods are often error-prone and inefficient. This research evaluates the performance of SVM models with RBF and Polynomial kernels for waste classification, using SqueezeNet for feature extraction. Datasets from Kaggle were preprocessed and augmented to improve model training. The experimental results show that the SVM model with RBF kernel outperforms the Polynomial kernel in classifying organic and recyclable waste, with an accuracy of 97.9% compared to 97.3% for the Polynomial kernel. This finding underscores the importance of kernel selection and parameter tuning in optimising SVM models for non-linear classification tasks. This research contributes to the development of more efficient and accurate waste classification technologies, promoting better waste management practices. Further research is recommended to explore advanced feature extraction methods and expand the scope of classification to cover a wider range of waste categories.
References
Alamsyah, R., Tarigan, I. J., & Yap, R. (2023). Klasifikasi Jenis Sampah dengan Metode Gray Level Co-Occurence Matrix (GLCM) dan Support Vector Machine (SVM). Jurnal Armada Informatika, 7(2), 342–352. http://jurnal.stmikmethodistbinjai.ac.id/jai/article/view/85
Altikat, A., Gulbe, A., & Altikat, S. (2022). Intelligent solid waste classification using deep convolutional neural networks. International Journal of Environmental Science and Technology, 19(3), 1285–1292. https://doi.org/10.1007/s13762-021-03179-4
Azis, F. A., Suhaimi, H., & Abas, E. (2020). Waste Classification using Convolutional Neural Network. ACM International Conference Proceeding Series, 9–13. https://doi.org/10.1145/3417473.3417474
Behera, S. K., Y, A. B., L, V., G, S., C, H. N., & J, S. P. (2020). AI Based Waste Classifier with Thermo-Rapid Composting. ICPECTS 2020 - IEEE 2nd International Conference on Power, Energy, Control and Transmission Systems, Proceedings, 1–4. https://doi.org/10.1109/ICPECTS49113.2020.9337012
Chhabra, M., Sharan, B., Elbarachi, M., & Kumar, M. (2024). Intelligent waste classification approach based on improved multi-layered convolutional neural network. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-18939-w
Dubey, S., Singh, M. K., Singh, P., & Aggarwal, S. (2020). Waste Management of Residential Society using Machine Learning and IoT Approach. 2020 International Conference on Emerging Smart Computing and Informatics, ESCI 2020, 293–297. https://doi.org/10.1109/ESCI48226.2020.9167526
Fahmi, M., & Yudhana, A. (2023). Pemilahan Sampah Menggunakan Model Klasifikasi Support Vector Machine Gabungan dengan Convolutional Neural Network. Jurnal Riset Komputer), 10(1), 2407–389. https://doi.org/10.30865/jurikom.v10i1.5468
Hanbal, I. F., Ingosan, J. S., Oyam, N. A. A., & Hu, Y. (2020). Classifying Wastes Using Random Forests, Gaussian Naïve Bayes, Support Vector Machine and Multilayer Perceptron. IOP Conference Series: Materials Science and Engineering, 803(1). https://doi.org/10.1088/1757-899X/803/1/012017
Hemidat, S., Achouri, O., Fels, L. El, Elagroudy, S., Hafidi, M., Chaouki, B., Ahmed, M., Hodgkinson, I., & Guo, J. (2022). Solid Waste Management in the Context of a Circular Economy in the MENA Region. Sustainability (Switzerland), 14(1). https://doi.org/10.3390/su14010480
Huang, K., Lei, H., Jiao, Z., & Zhong, Z. (2021). Recycling waste classification using vision transformer on portable device. Sustainability (Switzerland), 13(21), 1–14. https://doi.org/10.3390/su132111572
Khadijah, Endah, S. N., Kusumaningrum, R., Rismiyati, Sasongko, P. S., & Nisa, I. Z. (2021). Solid waste classification using pyramid scene parsing network segmentation and combined features. Telkomnika (Telecommunication Computing Electronics and Control), 19(6), 1902–1912. https://doi.org/10.12928/TELKOMNIKA.v19i6.18402
Leonardo, L., Yohannes, Y., & Hartati, E. (2020). Klasifikasi Sampah Daur Ulang Menggunakan Support Vector Machine Dengan Fitur Local Binary Pattern. Jurnal Algoritme, 1(1), 78–90. https://doi.org/10.35957/algoritme.v1i1.440
Marchesi, C., Rani, M., Federici, S., Lancini, M., & Depero, L. E. (2023). Evaluating chemometric strategies and machine learning approaches for a miniaturized near-infrared spectrometer in plastic waste classification. Acta IMEKO, 12(2), 1–7. https://doi.org/10.21014/actaimeko.v12i2.1531
Meng, S., & Chu, W. T. (2020). A Study of Garbage Classification with Convolutional Neural Networks. Indo - Taiwan 2nd International Conference on Computing, Analytics and Networks, Indo-Taiwan ICAN 2020 - Proceedings, 152–157. https://doi.org/10.1109/Indo-TaiwanICAN48429.2020.9181311
Nisa, I. Z., Endah, S. N., Sasongko, P. S., Kusumaningrum, R., Khadijah, K., & Rismiyati, R. (2022). Klasifikasi Citra Sampah Menggunakan Support Vector Machine dengan Ekstraksi Fitur Gray Level Co-Occurrence Matrix dan Color Moments. Jurnal Teknologi Informasi Dan Ilmu Komputer, 9(5), 921–930. https://doi.org/10.25126/jtiik.2022954868
Pandey, A., Jain, H., Raj, H., & Gupta, P. P. (2023). Identification and Classification of Waste using CNN in Waste Management. 2023 IEEE 8th International Conference for Convergence in Technology (I2CT), 1–6. https://doi.org/10.1109/I2CT57861.2023.10126312
Puspaningrum, A. P., Endah, S. N., Sasongko, P. S., Kusumaningrum, R., Khadijah, Rismiyati, & Ernawan, F. (2020). Waste Classification Using Support Vector Machine with SIFT-PCA Feature Extraction. ICICoS 2020 - Proceeding: 4th International Conference on Informatics and Computational Sciences, 4–9. https://doi.org/10.1109/ICICoS51170.2020.9298982
Romano, G., & Molinos-Senante, M. (2020). Factors affecting eco-efficiency of municipal waste services in Tuscan municipalities: An empirical investigation of different management models. Waste Management, 105, 384–394. https://doi.org/10.1016/j.wasman.2020.02.028
Sami, K. N., Amin, Z. M. A., & Hassan, R. (2020). Waste Management Using Machine Learning and Deep Learning Algorithms. International Journal on Perceptive and Cognitive Computing, 6(2), 97–106. https://doi.org/10.31436/ijpcc.v6i2.165
Sunardi, Yudhana, A., & Fahmi, M. (2023). Improving Waste Classification Using Convolutional Neural Networks: An Application of Machine Learning for Effective Environmental Management. Revue d’Intelligence Artificielle, 37(4), 845–855. https://doi.org/10.18280/ria.370404
Toğaçar, M., Ergen, B., & Cömert, Z. (2020). Waste classification using AutoEncoder network with integrated feature selection method in convolutional neural network models. Measurement: Journal of the International Measurement Confederation, 153. https://doi.org/10.1016/j.measurement.2019.107459
Wang, C., Qin, J., Qu, C., Ran, X., Liu, C., & Chen, B. (2021). A smart municipal waste management system based on deep-learning and Internet of Things. Waste Management, 135(January), 20–29. https://doi.org/10.1016/j.wasman.2021.08.028
Xu, X., Teng, G., Wang, Q., Zhao, Z., Wei, K., Bao, M., Zheng, Y., & Luo, T. (2023). Spectral preprocessing combined with feature selection improve model robustness for plastics samples classification by LIBS. Frontiers in Environmental Science, 11(May), 1–13. https://doi.org/10.3389/fenvs.2023.1175392
Yulita, I. N., Ardiansyah, F., Prabuwono, A. S., & Ramdhani, M. R. (2023). Recyclable Waste Classification using SquezeeNet and XGBoost. 14(10), 345–352.
Zayd, M. H., Oktavian, M. W., Meranggi, D. G. T., Figo, J. A., & Yudistira, N. (2022). Improvement of garbage classification using pretrained Convolutional Neural Network. Teknologi, 12(1), 1–8. https://doi.org/10.26594/teknologi.v12i1.2403
Zhang, Q., Yang, Q., Zhang, X., Bao, Q., Su, J., & Liu, X. (2021). Waste image classification based on transfer learning and convolutional neural network. Waste Management, 135(May), 150–157. https://doi.org/10.1016/j.wasman.2021.08.038
zhi Wentao, Gao Lan, Z. Z. (2020). Garbage Classification and Recognition Based on SqueezeNet. 122–125. https://doi.org/10.1109/WCMEIM52463.2020.00032