Machine Learning-Based Classification of Truck Vehicles for a Comprehensive Algorithm CNN Approach
DOI:
https://doi.org/10.59890/ijist.v2i6.2041Keywords:
Machine Learning, classification truck, Comprehensive AlgorithmAbstract
This research tackles the challenge of classifying truck vehicles using a comprehensive machine learning-based CNN algorithm approach. Initially, we collected a raw dataset of 560 images of various truck vehicles, which was expanded to 844 images through data augmentation techniques, including automatic orientation adjustments and resizing each image to 640x640 pixels. To achieve correct labeling for model training, the dataset underwent further refinement through thorough annotation. To determine which model was the most successful, a number of machine learning techniques were investigated and contrasted, including deep learning, support vector machines, and decision trees. The preprocessed dataset was used to optimize and train the selected model. We used measures like accuracy, precision, recall, and F1-score to evaluate the model's performance. The results showed that our all-inclusive algorithmic strategy outperformed conventional techniques in effectively addressing the unique difficulties of truck vehicle categorization. This study concludes that integrating advanced machine learning techniques with domain-specific knowledge in transportation results in a robust and adaptive classification system, enhancing accuracy and paving the way for broader applications in the transportation and logistics industry.
References
Dataset for Vehicle Detection by Neural Network. (n.d.). Retrieved 17 June 2024, from https://www.kaggle.com/datasets/niloykantipaul/dataset-for-vehicle-detection-by-neural-network
Istri, A. A., Paramitha, I., Nyoman, I., & Adiputra, M. (2022). DETEKSI KENDARAAN PADA LALU LINTAS MENGGUNAKAN ARTIFICIAL INTELLIGENCE UNTUK MENDUKUNG DENPASAR SMART CITY. Jurnal Informatika Teknologi Dan Sains (Jinteks), 4(4), 353–358. https://doi.org/10.51401/JINTEKS.V4I4.2074
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (n.d.). ImageNet Classification with Deep Convolutional Neural Networks.
Machine Learning in Logistics & Supply Chain [6 Use Cases]. (n.d.). Retrieved 17 June 2024, from https://acropolium.com/blog/adopting-machine-learning-in-supply-chain-and-logistics-for-successful-automation/
Maksum, Z. U., Prasetyo, Y., & Haniah, H. (2016). PERBANDINGAN KLASIFIKASI TUTUPAN LAHAN MENGGUNAKAN METODE KLASIFIKASI BERBASIS OBJEK DAN KLASIFIKASI BERBASIS PIKSEL PADA CITRA RESOLUSI TINGGI DAN MENENGAH.
Jurnal Geodesi Undip, 5(2), 97–107. https://doi.org/10.14710/JGUNDIP.2016.11526
Mo, B., Wang, Q., Guo, X., Winkenbach, M., & Zhao, J. (2023). Predicting drivers’ route trajectories in last-mile delivery using a pair-wise attention-based pointer neural network. Transportation Research Part E: Logistics and Transportation Review, 175(103168). https://doi.org/10.1016/j.tre.2023.103168
Mutianniza, SY. Z., & suwardoyo, untung. (2023). Aplikasi Kamera Cerdas Untuk Deteksi Kendaraan Menggunakan Library Tensorflow. Jurnal Sintaks Logika, 3(3), 61–68. https://doi.org/10.31850/JSILOG.V3I3.2589
Najiyah, I., & Topiq, S. (2021). KLASIFIKASI JENIS KENDARAAN RODA EMPAT MENGGUNAKAN EXTREME LEARNING MACHINE. Jurnal Responsif : Riset Sains Dan Informatika, 3(2), 199–206. https://doi.org/10.51977/JTI.V3I2.571
Nurcahyo, R., & Iqbal, M. (2022). Comparative Analysis of Deep Learning Models for Vehicle Detection. Journal of Systems Engineering and Information Technology (JOSEIT), 1(1), 27–32. https://doi.org/10.29207/JOSEIT.V1I1.1960
Pakzad, S. S., Ghalehnovi, M., & Ganjifar, A. (2024). A comprehensive comparison of various machine learning algorithms used for predicting the splitting tensile strength of steel fiber-reinforced concrete. Case Studies in Construction Materials, 20, e03092. https://doi.org/10.1016/J.CSCM.2024.E03092
Radikto, R., Mulyana, D. I., Rofik, M. A., & Zakaria, M. O. Z. (2022). Klasifikasi Kendaraan pada Jalan Raya menggunakan Algoritma Convolutional Neural Network ( CNN ). Jurnal Pendidikan Tambusai, 6(1), 1668–1679. https://doi.org/10.31004/JPTAM.V6I1.3179
Samudra, J. T., Rosnelly, R., & Situmorang, Z. (2023). Comparative Analysis of Support Vector Machine and Perceptron In The Classification of Subsidized Fuel Receipts. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(3), 652–656. https://doi.org/10.29207/RESTI.V7I3.4731
Shokravi, H., Shokravi, H., Bakhary, N., Heidarrezaei, M., Koloor, S. S. R., & Petrů, M. (2020). A Review on Vehicle Classification and Potential Use of Smart Vehicle-Assisted Techniques. Sensors 2020, Vol. 20, Page 3274, 20(11), 3274. https://doi.org/10.3390/S20113274
Supriyadi, A., Triayudi, A., Sholihati, I. D., Fakultas, ), Komunikasi, T., Informatika, D., Nasional, U., Sawo Manila, J., Minggu, P., Selatan, J., Khusus, D., Jakarta, I., Penulis, ) *, Abstrak, K., & Kunci, K. (2021). PERBANDINGAN ALGORITMA K-MEANS DENGAN K-MEDOIDS PADA PENGELOMPOKAN ARMADA KENDARAAN TRUK BERDASARKAN PRODUKTIVITAS. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 6(2), 229–240. https://doi.org/10.29100/JIPI.V6I2.2008
The Importance of Real-time Tracking in Modern Logistics | TCI Transportation. (n.d.). Retrieved 17 June 2024, from https://tcitransportation.com/blog/the-importance-of-real-time-tracking-in-modern-logistics/
Wahyono, W., & Hariyono, J. (2019). Determining Optimal Architecture of CNN using Genetic Algorithm for Vehicle Classification System. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 13(1), 63–72. https://doi.org/10.22146/IJCCS.42299
Wu, T., & Dong, Y. (2023). YOLO-SE: Improved YOLOv8 for Remote Sensing Object Detection and Recognition. Applied Sciences (Switzerland), 13(24). https://doi.org/10.3390/app132412977
zahra, S. az, sarifah, windy naila, elfaris, F., Rustamto, D. F., & Rosyani, P. (2023). KENDARAAN DETEKSI PENGENALAN KENDARAAN MENGGUNAKAN METODE FAST R-CNN. AI Dan SPK : Jurnal Artificial Intelligent Dan Sistem Penunjang Keputusan, 1(2), 166–171. https://jurnalmahasiswa.com/index.php/aidanspk/article/view/660