Comparative Analysis of Support Vector Machine and Random Forest Algorithms in Indonesian Batik Classification

Authors

  • Rainal Zulian Oktavianto Universitas Pelita Bangsa
  • Muhamad Fatchan Universitas Pelita Bangsa
  • Wahyu Hadikristanto Universitas Pelita Bangsa

DOI:

https://doi.org/10.59890/ijsas.v2i6.2072

Keywords:

Indonesian Batik, Classification, Support Vector Machine (SVM), Random Forest

Abstract

This study compares the performance of Support Vector Machine (SVM) and Random Forest (RF) algorithms in Indonesian batik image classification. Data collected from four batik categories: Pattern Batik Insang, Pattern Batik, Patterns Batik Dump, and Pattern Megamendung. Image feature extracted using Histogram of Oriented Gradients (HOG). SVM models with linear and RF kernels with 100 decision trees are trained and tested on this dataset. The evaluation results showed that the SVM has an accuracy of 88%, with precision and recall balanced between classes, while RF has an accuracy of 86%, with some classes showing excellent performance. SVM is superior in overall accuracy, but RF offers better interpretability and ease of setting parameters. The conclusions of this study suggest that both algorithms are able to effectively classify bacterial images, but the selection of the algority depends on the specific needs of the application. Further adjustment of parameters and additional preprocessing techniques are recommended to improve model performance. This research provides a strong foundation for further development in the classification of batic images using machine learning.

References

Bariyah, T., & Arif Rasyidi, M. (n.d.). Convolutional Neural Network Untuk Metode Klasifikasi Multi-Label Pada Motif Batik Convolutional Neural Network for Multi-Label Batik Pattern Classification Method. In Februari (Vol. 20, Issue 1).

Deni Akbar, M., & Arie Wijaya, Y. (n.d.). KLASIFIKASI MOTIF BATIK JAWA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBORS (KNN). https://ejournal.stmikgici.ac.id/

Denny, H., Samuel, K., Didi, K., & Anggun, D. (2019). Klasifikasi Motif Citra Batik Yogyakarta Menggunakan Metode Adaptive Neuro

Fuzzy Inference System. Jurnal Ilmiah Setrum Article In Press, 8(2), 229–237.

Fonda, H., Irawan, Y., Febriani, A., Informatika, S., & Pekanbaru, H. T. (2020). KLASIFIKASI BATIK RIAU DENGAN MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORKS (CNN) 1 2 3 Email : 1 2 3. In JIK (Vol. 9, Issue 1). http://jik.htp.ac.id

I Putu Agus Aryawan, I. N. P. K. Q. Fredlina. (n.d.). ANALISIS PERBANDINGAN ALGORITMA CNN DAN SVM PADA KLASIFIKASI EKSPRESI WAJAH.

Mawan, R. (n.d.). Klasifikasi motif batik menggunakan convolutional neural network. https://doi.org/10.36802/jnanaloka

Susetyoko, R., Yuwono, W., Purwantini, E., & Ramadijanti, N. (n.d.). Perbandingan Metode Random Forest, Regresi Logistik, Naïve Bayes, dan Multilayer Perceptron Pada Klasifikasi Uang Kuliah Tunggal (UKT). 7(1).

Wiryadinata, R., Rofiki Adli, M., Fahrizal, R., Alfanz, R., Teknik Elektro, J., Kunci-Ekstraksi ciri, K., Banten, B., & Vector Machine, S. (2019). Klasifikasi 12 Motif Batik Banten Menggunakan Support Vector Machine (Vol. 13, Issue 1). https://jurnaleeccis.ub.ac.id/

Yap, A. J. (n.d.). KLASIFIKASI KAIN TENUN DI PULAU TIMOR MENGGUNAKAN METODE MULTI SUPPORT VECTOR MACHINE (SVM).

Yohannes, Y., Devella, S., & Pandrean, A. H. (2020). Penerapan Speeded-Up Robust Feature pada Random Forest Untuk Klasifikasi Motif Songket Palembang. Jurnal Teknik Informatika Dan Sistem Informasi, 5(3). https://doi.org/10.28932/jutisi.v5i3.1978

Zaman, B., Rifa’i, A., & Hanif, M. B. (2021). Komparasi Metode Klasifikasi Batik Menggunakan Neural Network Dan K-Nearest Neighbor Berbasis Ekstraksi Fitur Tekstur. Journal of Information Systems and Informatics, 3(4). http://journal-isi.org/index.php/isi

Downloads

Published

2024-07-01

How to Cite

Oktavianto, R. Z., Muhamad Fatchan, & Wahyu Hadikristanto. (2024). Comparative Analysis of Support Vector Machine and Random Forest Algorithms in Indonesian Batik Classification. International Journal of Sustainable Applied Sciences, 2(6), 593–602. https://doi.org/10.59890/ijsas.v2i6.2072

Issue

Section

Articles