Calculation of Impurity Levels in SIR 3CV Type Rubber and Mass Balance at the Drying Station in PT. XYZ North Sumatera
DOI:
https://doi.org/10.59890/ijarss.v2i1.1253Keywords:
Impurity Level, Latex, Mass Balance, Drying StationAbstract
The quality of latex significantly affects the quality level of rubber produced, with one of its parameters being the impurity level, with a standard value of 0.03%. The impurity level strongly influences the rubber quality, where higher impurity levels correspond to lower rubber quality, and vice versa. The research method employed was experimental and calculation using mass balance. The calculated results indicated impurity levels in the rubber as follows: 0.0059%, 0.0069%, 0.0074%, 0.0419%, 0.0054%, 0.0429%, and 0.0444%. The average total impurity level was 0.0219%. However, some rubber samples did not meet quality standards due to contaminated tapping equipment, inadequate washing processes, and damaged filtration tools. In the mass balance at the drying station, the first input material was 125 kg/hour with a water component balance of 50%, HAS (Hevea Acidic Solution) 12%, SMBS (Sodium Metabisulfite) 8%, and latex 30%. The second input material is 18.75 kg/hour, consisting of 100% steam. The output material at the drying station is 143.75 kg/hour, with a water component balance of 43.47%, HAS 10.43%, SMBS 6.95%, latex 26.08%, and steam 13.07%.References
Aryanti, F. I., Ahsan, S., Sali, R., & Lathifah, L. (2018). Karakterisasi Karet Remah SIR 20 Pada Pembuatan Ban. Jurnal Teknologi Dan Manajemen, 16(2), 56–63.
Chandra, T., Harahap, H., Wangi, Y., & Halimatuddahliana. (2020). Physical and mechanical properties of natural rubber latex film (Rubber Dam) products with filler nanocrystal cellulose from peanut shell (Arachis hypogea L.) and synthetic dyes. IOP Conference Series: Materials Science and Engineering, 801(1). https://doi.org/10.1088/1757-899X/801/1/012091
Dewi, D. S., Prasetyoo, H. E., Karnaldeli, E., Prasetyo, H. E., & Karnadeli, E. (2020). Pengolahan Air Limbah Industri Karet Remah (Crumb Rubber) Dengan Menggunakan Reagen Fenton. Jurnal Universitas PGRI Palembang, 5(1), 47–57. http://www.kdei-taipei.org
Forrest, M. J. (Martin J. (2018). Rubber analysis : characterisation, failure diagnosis and reverse engineering. Smithers Rapra.
Novita, S. A., Hendra, H., Jamaluddin, J., Makky, M., & Fahmi, K. (2019). Design and Performance Test of Rubber Grinding Machine. Journal of Applied Agricultural Science and Technology, 3(2), 299–308. https://doi.org/10.32530/jaast.v3i2.112
Nurjannah, Widianti, N., Kinasih, N. A., Puspitasari, S., & Cifriadi, A. (2020). Komparasi Perpaduan SIR20/SBR Dan SIR 3CV/BR Sebagai Base Elastomer Terhadap Karakteristik Komposit Karet Untuk Telapak Ban Pejal Vulkanisir. Jurnal Penelitian Karet, 197–208. https://doi.org/10.22302/ppk.jpk.v2i38.711
Peramune, M. R., & AFS, B. (2007). A Value Chain Assessment of the Rubber Industry in Indonesia.
PT. XYZ. (2020). Panduan Pengolahan Lateks.
Qotimah, H. (2021). Sejarah Perkembangan Komoditi Karet Rakyat Jambi 1997- 2010 [Skripsi]. Universitas Sulthan Thaha Saifuddin.
Simatupang, D. F., Saragih, G., & Simbolon, D. M. C. (2021). Studi Penentuan Perolehan dan Kehilangan Minyak dari Lumpur Buangan Proses pada Unit Decanter di Pabrik Kelapa Sawit PT. SPTG. Seminar Nasional Teknologi Industri VII, 376–382.
Simatupang, D. F., Yunianto, & Sihaloho, E. D. W. (2021). Analisa Kebutuhan Batu Bara pada Unit Dryer dalam Pengeringan Pupuk NPK di PT AGS Medan. CHEESA: Chemical Engineering Research Articles, 4(1), 11–17. https://doi.org/10.25273/cheesa.v4i1.7830.11-17
Tarigan, J., & Simatupang, D. F. (2019). Uji Kualitas Minyak Goreng Bekas Pakai Dengan Penentuan Bilangan Asam, Bilangan Peroksida Dan Kadar Air. Ready Star , 2(1), 6–10.
Verheye, W. (2010). Growth and Production of Rubber. http://www.eolss.net
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ratna Kristina Tarigan, Dimas Frananta Simatupang
This work is licensed under a Creative Commons Attribution 4.0 International License.