Controlling the Dji Ryze Tello Drone Using Human Hand Gestures

Authors

  • Widodo Universitas Sains Teknologi Jayapura
  • Aldis S Andoy Universitas Sains Teknologi Jayapura
  • Rosalin T Tayane Universitas Sains Teknologi Jayapura
  • Iyus Supriadi Universitas Sains Teknologi Jayapura

DOI:

https://doi.org/10.59890/ijarss.v2i2.1417

Keywords:

Computer Vision, Hand Gestures Recognition, Drone DJI Ryze Tello

Abstract

Computer vision is an important part of the development of modern technology. One of the highlights is the introduction of hand movement, which integrates artificial intelligence into device controls. In the use of devices, especially drones or robots, this technology allows control without the need for additional devices such as remote control. Objectives Research applied technology Gesture Identification Hand drone DJI Ryze Tello. This application involves using Python 3 as a programming language, PyCharm as an editor, the OpenCV Library and Google MediaPipe (Hands) for real-time image processing and hand tracking. Research results show that drone control through hand gestures in front of a webcam can be done successfully, highlighting the potential of CVs to improve user interfaces on modern devices

References

Alamsyah, N. (2022). Rancang Bangun Dan Implementasi Sistem Kendali Robot Penanggulangan Bencana Alam Pantai Angin Mammiri Makassar. Bulletin of Information Technology (BIT), 3(4), 407–412. https://journal.fkpt.org/index.php/BIT/article/view/434

Azis, N., Azzahra, A. S., Muditomo, A., Medika, U. A., & Timur, J. (2022). Analysis Of Human Computer Interaction Approach In Pospay Application. Jurnal Mantik, 6(36), 1956–1963.

Damatraseta, F., Novariany, R., & Ridhani, M. A. (2021). Real-time BISINDO Hand Gesture Detection and Recognition with Deep Learning CNN. Jurnal Informatika Kesatuan, 1(1), 71–80. https://doi.org/10.37641/jikes.v1i1.774

Kurnia Rahman, A., Supriyanto, H., & Meizinta, T. (2019). RANCANG BANGUN DAN IMPLEMENTASI SISTEM KENDALI QUADCOPTER MELALUI JARINGAN INTERNET BERBASIS LOKASI MENGGUNAKAN SMARTPHONE ANDROID. Seminar Nasional Kontrol, Instrumentasi Dan Otomasi (SNIKO) 2018, 307–318. https://doi.org/10.5614/sniko.2018.35

Kurniawan, M. A. S., Arap, N. A., Irawan, A., & Azizah, N. (2023). Digitalisasi Pendidikan Berbasis Teknologi Abad 21 ( AI , AR , VR , Iot , Blockchain , Drones , Gamification , Machine Learning , Robotics , 3D Printing ). 3(3), 230–241.

Kusuma, D. H., & Shodiq, M. N. (2018). Sistem Presentasi Cerdas Menggunakan Pengenalan Gerakan Tangan Berdasarkan Klasifikasi Dari Sinyal Electromyography (EMG) Menggunakan Myo Armband. INTENSIF, 2(1), 36. https://doi.org/10.29407/intensif.v2i1.11939

Makahaube, S. S., Sambul, A. M., & Sompie, S. R. (2021). Implementation of Gesture Recognition Technology for Automated Education Service Kiosk. Jurnal Teknik Informatika, 16(4), 1–8. https://doi.org/https://doi.org/10.35793/jti.16.4.2021.34210

Yunita, H., & Setyati, E. (2019). Hand Gesture Recognition Sebagai Pengganti Mouse Komputer Menggunakan Kamera. Jurnal ELTIKOM, 3(2), 64–76. https://doi.org/10.31961/eltikom.v3i2.114

Downloads

Published

2024-02-28

How to Cite

Widodo, Andoy, A. S., Tayane, R. T., & Supriadi, I. (2024). Controlling the Dji Ryze Tello Drone Using Human Hand Gestures. International Journal of Applied Research and Sustainable Sciences, 2(2), 123–132. https://doi.org/10.59890/ijarss.v2i2.1417