Controlling the Dji Ryze Tello Drone Using Human Hand Gestures
DOI:
https://doi.org/10.59890/ijarss.v2i2.1417Keywords:
Computer Vision, Hand Gestures Recognition, Drone DJI Ryze TelloAbstract
Computer vision is an important part of the development of modern technology. One of the highlights is the introduction of hand movement, which integrates artificial intelligence into device controls. In the use of devices, especially drones or robots, this technology allows control without the need for additional devices such as remote control. Objectives Research applied technology Gesture Identification Hand drone DJI Ryze Tello. This application involves using Python 3 as a programming language, PyCharm as an editor, the OpenCV Library and Google MediaPipe (Hands) for real-time image processing and hand tracking. Research results show that drone control through hand gestures in front of a webcam can be done successfully, highlighting the potential of CVs to improve user interfaces on modern devices
References
Alamsyah, N. (2022). Rancang Bangun Dan Implementasi Sistem Kendali Robot Penanggulangan Bencana Alam Pantai Angin Mammiri Makassar. Bulletin of Information Technology (BIT), 3(4), 407–412. https://journal.fkpt.org/index.php/BIT/article/view/434
Azis, N., Azzahra, A. S., Muditomo, A., Medika, U. A., & Timur, J. (2022). Analysis Of Human Computer Interaction Approach In Pospay Application. Jurnal Mantik, 6(36), 1956–1963.
Damatraseta, F., Novariany, R., & Ridhani, M. A. (2021). Real-time BISINDO Hand Gesture Detection and Recognition with Deep Learning CNN. Jurnal Informatika Kesatuan, 1(1), 71–80. https://doi.org/10.37641/jikes.v1i1.774
Kurnia Rahman, A., Supriyanto, H., & Meizinta, T. (2019). RANCANG BANGUN DAN IMPLEMENTASI SISTEM KENDALI QUADCOPTER MELALUI JARINGAN INTERNET BERBASIS LOKASI MENGGUNAKAN SMARTPHONE ANDROID. Seminar Nasional Kontrol, Instrumentasi Dan Otomasi (SNIKO) 2018, 307–318. https://doi.org/10.5614/sniko.2018.35
Kurniawan, M. A. S., Arap, N. A., Irawan, A., & Azizah, N. (2023). Digitalisasi Pendidikan Berbasis Teknologi Abad 21 ( AI , AR , VR , Iot , Blockchain , Drones , Gamification , Machine Learning , Robotics , 3D Printing ). 3(3), 230–241.
Kusuma, D. H., & Shodiq, M. N. (2018). Sistem Presentasi Cerdas Menggunakan Pengenalan Gerakan Tangan Berdasarkan Klasifikasi Dari Sinyal Electromyography (EMG) Menggunakan Myo Armband. INTENSIF, 2(1), 36. https://doi.org/10.29407/intensif.v2i1.11939
Makahaube, S. S., Sambul, A. M., & Sompie, S. R. (2021). Implementation of Gesture Recognition Technology for Automated Education Service Kiosk. Jurnal Teknik Informatika, 16(4), 1–8. https://doi.org/https://doi.org/10.35793/jti.16.4.2021.34210
Yunita, H., & Setyati, E. (2019). Hand Gesture Recognition Sebagai Pengganti Mouse Komputer Menggunakan Kamera. Jurnal ELTIKOM, 3(2), 64–76. https://doi.org/10.31961/eltikom.v3i2.114
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Widodo Widodo, Aldis S Andoy, Rosalin T Tayane, Iyus Supriadi
This work is licensed under a Creative Commons Attribution 4.0 International License.