Comparative Analysis of Tilt And Illumination of Solar Panels in the Design of Solar Test Simulator
DOI:
https://doi.org/10.59890/ijarss.v2i8.2209Keywords:
Solar Panel, Solar Test Simulator, Solar Incidence Angle, Tilt, DesignAbstract
In order for the designed tool to simulate solar panel measurements based on real-world conditions, the solar panel placement holder was arranged in a specific way during the design process. A monitor display that is mounted on the design will show the effectiveness of the solar panels and provide general solar panel information. Limitations in the positioning of solar panels will not provide a reference to conditions for measurement depending on the angle of incidence of the sun so further design needs to be done regarding the position of solar panels when measurements are taken. The development carried out in the design of this tool is in the form of adjusting the solar panel holder in the form of a solar panel holder tilt of 0°, 90°, 180°, and a distance of 30 cm halogen lamp as an energy source that is measured. Measurement results based on design, temperature 46°C, and 100% light.
References
Agostinelli, G., Batzner, D. L., & Burgelman, M. (2002). An alternative model for V, G and T dependence of CdTe solar cells IV characteristics. Proceedings of the 29th IEEE Photovoltaic Specialists Conference, 6, 744–747.
Buchroithner, A., Gerl, B., Felsberger, R., & Wegleiter, H. (2021). Design and operation of a versatile, low-cost, high-flux solar simulator for automated CPV cell and module testing. Solar Energy, 228(August), 387–404. https://doi.org/10.1016/j.solener.2021.08.068
Deepak, Srivastava, S., & Malvi, C. S. (2020). Light sources selection for solar simulators: A review. WEENTECH Proceedings in Energy, July, 28–46. https://doi.org/10.32438/wpe.060257
Fauzi, F., Tajudin, M. F. N., Mohamed, M. F., Azmi, A., & Manaf, N. A. A. (2021). Assessment of in-house build low cost solar panel simulator. Journal of Physics: Conference Series, 1878(1). https://doi.org/10.1088/1742-6596/1878/1/012038
Frolova, T. I., Churyumov, G. I., Vlasyuk, V. M., & Kostylyov, V. P. (2019). Combined Solar Simulator for Testing Photovoltaic Devices. Proceedings - 2019 IEEE 1st Global Power, Energy and Communication Conference, GPECOM 2019, 276–280. https://doi.org/10.1109/GPECOM.2019.8778607
Li, Q., Wang, J., Qiu, Y., Xu, M., & Wei, X. (2021). A modified indirect flux mapping system for high-flux solar simulators. Energy, 235, 121311. https://doi.org/10.1016/j.energy.2021.121311
Liu, G., Ning, J., Gu, Z., & Wang, Z. (2021). Stability Test on Power Supply to the Xenon Lamp of Solar Simulator. Journal of Physics: Conference Series, 1820(1). https://doi.org/10.1088/1742-6596/1820/1/012142
López-Fraguas, E., Sánchez-Pena, J. M., & Vergaz, R. (2019). A Low-Cost LED-Based Solar Simulator. IEEE Transactions on Instrumentation and Measurement, 68(12), 4913–4923. https://doi.org/10.1109/TIM.2019.2899513
Moria, H., Mohamad, T. I., & Aldawi, F. (2016). Available online www.jsaer.com Research Article Radiation distribution uniformization by optimized halogen lamps arrangement for a solar simulator. 3(6), 29–34.
Quandt, A., & Warmbier, R. (2019). Solar cell simulations made easy. International Conference on Transparent Optical Networks, 2019-July, 1–4. https://doi.org/10.1109/ICTON.2019.8840329
Rashid, M. H. (2007). Power Electronics Handbook. In Power Electronics Handbook. https://doi.org/10.1016/B978-0-12-088479-7.X5018-4
Reichmuth, S. K., Siefer, G., Schachtner, M., Muhleis, M., Hohl-Ebinger, J., & Glunz, S. W. (2020). Measurement Uncertainties in I-V Calibration of Multi-junction Solar Cells for Different Solar Simulators and Reference Devices. IEEE Journal of Photovoltaics, 10(4), 1076–1083. https://doi.org/10.1109/JPHOTOV.2020.2989144
Saadaoui, S., Torchani, A., Azizi, T., & Gharbi, R. (2014). Hybrid halogen-LED sources as an affordable solar simulator to evaluate Dye Sensitized Solar Cells. STA 2014 - 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, 884–887. https://doi.org/10.1109/STA.2014.7086810
Severns, R., & Reduce, E. M. I. (2006). Design of snubbers for power circuits. International Rectifier Corporation, I. http://www.electro-tech-online.com/custompdfs/2008/02/design.pdf
Siregar, S., & Soegiarto, D. (2014). Solar panel and battery street light monitoring system using GSM wireless communication system. 2014 2nd International Conference on Information and Communication Technology, ICoICT 2014, 272–275. https://doi.org/10.1109/ICoICT.2014.6914078
Situmorang, J., & Pasasa, L. A. (2011). Pemanfaatan Karakteristik Sel Surya Sebagai Media Pembelajaran Fisika Listrik Dinamis. 2011(Snips), 22–23.
Søren Bækhøj Kjær, B. (2005). Aalborg Ph.D, Thesis - Design and Control of an Inverter for Photovoltaic Applications.
Tanesab, J., Ali, M., Parera, G., Mauta, J., & Sinaga, R. (2019). A Modified Halogen Solar Simulator. https://doi.org/10.4108/eai.18-10-2019.2289851
Tavakoli, M., Jahantigh, F., & Zarookian, H. (2021). Adjustable high-power-LED solar simulator with extended spectrum in UV region. Solar Energy, 220(February), 1130–1136. https://doi.org/10.1016/j.solener.2020.05.081
Wang, S., Jiang, W., & Lin, Z. (2015). Practical photovoltaic simulator with a cross tackling control strategy based on the first-hand duty cycle processing. Journal of Power Electronics, 15(4), 1018–1025. https://doi.org/10.6113/JPE.2015.15.4.1018
Wang, W., & Laumert, B. (2014). Simulate a ‘Sun’ for Solar Research: A Literature Review of Solar Simulator Technology. 1–37.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Cholish, Ibnu Hajar, Sharfina Faza, Zumhari, Abdul Azis, Abdulah
This work is licensed under a Creative Commons Attribution 4.0 International License.