Comparative Analysis of Tilt And Illumination of Solar Panels in the Design of Solar Test Simulator

Authors

  • Cholish Politeknik Negeri Medan
  • Ibnu Hajar Politeknik Negeri Medan
  • Sharfina Faza Politeknik Negeri Medan
  • Zumhari Politeknik Negeri Medan
  • Abdul Azis Politeknik Negeri Medan
  • Abdulah Politeknik Negeri Medan

DOI:

https://doi.org/10.59890/ijarss.v2i8.2209

Keywords:

Solar Panel, Solar Test Simulator, Solar Incidence Angle, Tilt, Design

Abstract

In order for the designed tool to simulate solar panel measurements based on real-world conditions, the solar panel placement holder was arranged in a specific way during the design process. A monitor display that is mounted on the design will show the effectiveness of the solar panels and provide general solar panel information. Limitations in the positioning of solar panels will not provide a reference to conditions for measurement depending on the angle of incidence of the sun so further design needs to be done regarding the position of solar panels when measurements are taken. The development carried out in the design of this tool is in the form of adjusting the solar panel holder in the form of a solar panel holder tilt of 0°, 90°, 180°, and a distance of 30 cm halogen lamp as an energy source that is measured. Measurement results based on design, temperature 46°C, and 100% light.

References

Agostinelli, G., Batzner, D. L., & Burgelman, M. (2002). An alternative model for V, G and T dependence of CdTe solar cells IV characteristics. Proceedings of the 29th IEEE Photovoltaic Specialists Conference, 6, 744–747.

Buchroithner, A., Gerl, B., Felsberger, R., & Wegleiter, H. (2021). Design and operation of a versatile, low-cost, high-flux solar simulator for automated CPV cell and module testing. Solar Energy, 228(August), 387–404. https://doi.org/10.1016/j.solener.2021.08.068

Deepak, Srivastava, S., & Malvi, C. S. (2020). Light sources selection for solar simulators: A review. WEENTECH Proceedings in Energy, July, 28–46. https://doi.org/10.32438/wpe.060257

Fauzi, F., Tajudin, M. F. N., Mohamed, M. F., Azmi, A., & Manaf, N. A. A. (2021). Assessment of in-house build low cost solar panel simulator. Journal of Physics: Conference Series, 1878(1). https://doi.org/10.1088/1742-6596/1878/1/012038

Frolova, T. I., Churyumov, G. I., Vlasyuk, V. M., & Kostylyov, V. P. (2019). Combined Solar Simulator for Testing Photovoltaic Devices. Proceedings - 2019 IEEE 1st Global Power, Energy and Communication Conference, GPECOM 2019, 276–280. https://doi.org/10.1109/GPECOM.2019.8778607

Li, Q., Wang, J., Qiu, Y., Xu, M., & Wei, X. (2021). A modified indirect flux mapping system for high-flux solar simulators. Energy, 235, 121311. https://doi.org/10.1016/j.energy.2021.121311

Liu, G., Ning, J., Gu, Z., & Wang, Z. (2021). Stability Test on Power Supply to the Xenon Lamp of Solar Simulator. Journal of Physics: Conference Series, 1820(1). https://doi.org/10.1088/1742-6596/1820/1/012142

López-Fraguas, E., Sánchez-Pena, J. M., & Vergaz, R. (2019). A Low-Cost LED-Based Solar Simulator. IEEE Transactions on Instrumentation and Measurement, 68(12), 4913–4923. https://doi.org/10.1109/TIM.2019.2899513

Moria, H., Mohamad, T. I., & Aldawi, F. (2016). Available online www.jsaer.com Research Article Radiation distribution uniformization by optimized halogen lamps arrangement for a solar simulator. 3(6), 29–34.

Quandt, A., & Warmbier, R. (2019). Solar cell simulations made easy. International Conference on Transparent Optical Networks, 2019-July, 1–4. https://doi.org/10.1109/ICTON.2019.8840329

Rashid, M. H. (2007). Power Electronics Handbook. In Power Electronics Handbook. https://doi.org/10.1016/B978-0-12-088479-7.X5018-4

Reichmuth, S. K., Siefer, G., Schachtner, M., Muhleis, M., Hohl-Ebinger, J., & Glunz, S. W. (2020). Measurement Uncertainties in I-V Calibration of Multi-junction Solar Cells for Different Solar Simulators and Reference Devices. IEEE Journal of Photovoltaics, 10(4), 1076–1083. https://doi.org/10.1109/JPHOTOV.2020.2989144

Saadaoui, S., Torchani, A., Azizi, T., & Gharbi, R. (2014). Hybrid halogen-LED sources as an affordable solar simulator to evaluate Dye Sensitized Solar Cells. STA 2014 - 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, 884–887. https://doi.org/10.1109/STA.2014.7086810

Severns, R., & Reduce, E. M. I. (2006). Design of snubbers for power circuits. International Rectifier Corporation, I. http://www.electro-tech-online.com/custompdfs/2008/02/design.pdf

Siregar, S., & Soegiarto, D. (2014). Solar panel and battery street light monitoring system using GSM wireless communication system. 2014 2nd International Conference on Information and Communication Technology, ICoICT 2014, 272–275. https://doi.org/10.1109/ICoICT.2014.6914078

Situmorang, J., & Pasasa, L. A. (2011). Pemanfaatan Karakteristik Sel Surya Sebagai Media Pembelajaran Fisika Listrik Dinamis. 2011(Snips), 22–23.

Søren Bækhøj Kjær, B. (2005). Aalborg Ph.D, Thesis - Design and Control of an Inverter for Photovoltaic Applications.

Tanesab, J., Ali, M., Parera, G., Mauta, J., & Sinaga, R. (2019). A Modified Halogen Solar Simulator. https://doi.org/10.4108/eai.18-10-2019.2289851

Tavakoli, M., Jahantigh, F., & Zarookian, H. (2021). Adjustable high-power-LED solar simulator with extended spectrum in UV region. Solar Energy, 220(February), 1130–1136. https://doi.org/10.1016/j.solener.2020.05.081

Wang, S., Jiang, W., & Lin, Z. (2015). Practical photovoltaic simulator with a cross tackling control strategy based on the first-hand duty cycle processing. Journal of Power Electronics, 15(4), 1018–1025. https://doi.org/10.6113/JPE.2015.15.4.1018

Wang, W., & Laumert, B. (2014). Simulate a ‘Sun’ for Solar Research: A Literature Review of Solar Simulator Technology. 1–37.

Downloads

Published

2024-08-12

How to Cite

Cholish, Hajar, I., Faza, S., Zumhari, Azis, A., & Abdulah. (2024). Comparative Analysis of Tilt And Illumination of Solar Panels in the Design of Solar Test Simulator. International Journal of Applied Research and Sustainable Sciences, 2(8), 625–634. https://doi.org/10.59890/ijarss.v2i8.2209

Issue

Section

Articles